Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(i)	electrolysis			(1)
1 (a)(ii)	graphite / carbon			(1)
1 (a)(iii)	- on left and + on right			(1)
1 (a)(iv)	aluminium oxide / alumina cryolite	accept correct formulae ignore bauxite		$\begin{array}{\|l\|} \hline 1 \\ 1 \\ (2) \\ \hline \end{array}$
1 (a)(v)	electricity (ignore qualifications) / electrical energy (not energy alone)	Anode/positive electrode replacement	Cathode /electrode replacement	(1)
1 (b)(i)	oxygen			(1)
1 (b)(ii)	- carbon dioxide / carbon monoxide -graphite/carbon/electrode oxidised/burned/reacts with oxygen	accept correct formulae (ignore lower case)	lists equation	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ (2) \end{array}$
				9
2 (a)(i)	Any two from: -same or similar chemical properties / same functional group - gradation in physical properties - neighbouring/successive members differ by CH2	Gradation of specified physical property (eg: boiling point/bp(t), melting point/mp(t), viscosity)	NOT a specified chemical property different/sam e physical properties	(2)
2 (a)(ii)	alkene			(1)
2 (b)(i)	-(H) one electron shown -(C) two electrons in first shell and four in second shell	Accept any symbol for electrons.	Electrons on nucleus	$\begin{aligned} & \hline 1 \\ & 1 \\ & \text { (2) } \end{aligned}$
2 (b)(ii)	-all five atoms and four shared pairs of electrons - no extra outer electrons.	IGNORE inner electrons		1 1 (2)
2 (c)(i)	- (compounds with) same molecular formula -(but) different structural formulae /displayed formula/structure / atoms arranged differently (same) elements = 0 marks	Mark independently	same chemical formula. Reject substances.	1 (2)

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Correct structures of butane and methylpropane. ALL bonds shown Penalise sticks with missing H once only			$\begin{aligned} & \hline 1 \\ & 1 \\ & (2) \end{aligned}$
				11
3 (a)(i)	any two from - effervescence / fizzing / bubbles - cloudiness / white precipitate /milky / white suspension -Ca get smaller / disappears (ignore dissolves). - Ca moves up and down	Ignore gas made ignore floats/moves	List	(2)
3 (a)(ii)	$\mathrm{Ca}(\mathrm{OH}) 2$			(1)
3 (a)(iii)	-blue -alkali / OH^{-}/ hydroxide / pH >7 (ignore base) - stated pH value in range 8-14		purple	$\begin{aligned} & 1 \\ & \hline 1 \\ & \hline \end{aligned}$ (2)
3 (b)(i)	-grey / silver(y) - white			$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$ (2)
3 (b)(ii)	any two from -over/through water / downward displacement of water - (gas) syringe - upward delivery / downward displacement of air	a description of this suitable diagrams	gas cylinder	(2)
3 (b)(iii)	hydrogen + oxygen \rightarrow water / steam	ignore heat	formulae	(1)
				10
4 (a)(i)	diffusion			(1)
4 (a)(ii)	-mention of particles (if particles named, must be correct) in correct context \bullet-moving (randomly)	(accept molecules/ ions) move (from high to low concentration)		$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline(2) \end{array}$
4 (b)(i)	-(blue) ppt - colour not needed but penalise ppt if colour is wrong -deep/dark/royal blue -solution / dissolves	ignore changes to colour of solution	Dark/royal/de ep blue ppt	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \\ 1 \\ \hline \end{array}$
4 (b)(ii)	$\begin{aligned} & {\left[\mathrm{Cu}(\mathrm{H} 2 \mathrm{O})^{2} 2(\mathrm{NH} 3) 4\right]^{2+} /} \\ & {\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2^{+}}} \end{aligned}$	Formulae without []		(1)

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (a)	any five from: - add magnesium carbonate to acid -stir/mix -excess magnesium carbonate - filter / centrifuge and decant -heat or evaporate filtrate and stop evaporation at a suitable point / heat filtrate and leave to cool / leave filtrate to evaporate or to crystallise or for suitable time / place in oven below $100^{\circ} \mathrm{C}$ -dry crystals with (filter) paper /desiccator	Ignore indicators - If use sodium carbonate (or other soluble carbonate)only points 2,5,6 - If use other insoluble carbonate, all bar first point. -Wrong method of prep. Then get 5 and 6 only.	Heat to dryness, can not get 5 or 6	(5)
6 (b)	- colourless -to pink	if just state "pink" with no start colour, then score 1	purple / red	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$ (2)
				7
7 (a)(i)	- add (named) acid -bubbles/effervescence/fizzing OR gas produced turns limewater milky	$2^{\text {nd }}$ mark possible only if acid added		$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$ (2)
7 (a)(ii)	```2NaOH + CO2 }->\textrm{Na}2\textrm{CO}3+\mp@subsup{\textrm{H}}{2}{ formulae = 1 balancing = 1 (only if formulae correct)```	Accept any multiple		(2)
7 (b)(i)	- Mr NaHCO3 $=84$ - moles $=4.2 \div 84$ $\bullet=0.05(0)$ ignore any units Correct answer scores 3 If M_{r} incorrect, max 2 (107 gives 0.039; 168 gives 0.025)			$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \\ \hline \end{array}$ (3)
7 (b)(ii)	$\text { (i) } \div 2=0.025$ ignore any units	cq		(1)
7 (b)(iii)	(ii) $\times 24\left(\mathrm{dm}^{3}\right)=0.6$ unit not required but penalise incorrect units.	cq	answer in cm^{3}	(1)
				9
8 (a)	any in range 40 to 100			(1)
8 (b)(i)	$\begin{array}{\|l\|} \hline \mathrm{H} 2+\mathrm{Cl} 2 \rightarrow 2 \mathrm{HCl} \\ \text { formulae }=1 \\ \text { balancing }=1 \text { (only if formulae } \\ \text { correct) accept any multiples } \\ \hline \end{array}$		CL	(2)

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
8 (b)(ii)	water: - paper becomes red (NOT orange) - acidic / H^{+}ions produced methylbenzene: - no change / orange - no $\mathrm{H}+$ ions formed / not acidic /does not ionise (indep. of colour)	red/orange ignore refs to being neutral	Orange Ionizes alone Green References to acidity of methyl benzene	1 1 1 (4)
				7
9 (a)(i)	galvanising / sacrificial protection			(1)
9 (a)(ii)	railings / cars /bridges / buckets / watering cans / lamp posts etc.	accept ships/boats even though zinc blocks and not a continuous layer used	bikes	(1)
9 (a)(iii)	- zinc more reactive (than iron) - zinc reacts/corrodes/oxidises in preference to /before /instead of iron	It is more reactive than iron	It is more reactive zinc rusts protective coating of zinc oxide	1 1 (2)
9 (b)	- zinc - loses electron(s) / oxidation number increases		$\begin{aligned} & \text { If not zinc = } \\ & \text { zero } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$ (2)
9 (c)	- make solution of nickel nitrate - add metal - if reaction occurs then metal is more reactive than nickel OR - work down from top of list until no reaction occurs / work up from bottom of list until reaction does occur.	Displacement reaction without making a solution is $\max 2$	Reaction with anything else (such as $\mathrm{HCl}(\mathrm{aq}))$ is zero react with metal (for $2^{\text {nd }}$ mark)	1 1 1 (3)
				9
10 (a)	\bullet - Increased -endothermic (left to right) or description of endothermic / $\Delta \mathrm{H}$ is positive	ignore references to rate	If decreased or stays the same = zero	$\begin{gathered} \hline 1 \\ 1 \\ (2) \end{gathered}$
10 (b)	- correct structure with minimum 4	Ignore "n"	any structure	1

